A hemidesmosomal protein regulates actin dynamics and traction forces in motile keratinocytes.
نویسندگان
چکیده
During wound healing of the skin, keratinocytes disassemble hemidesmosomes and reorganize their actin cytoskeletons in order to exert traction forces on and move directionally over the dermis. Nonetheless, the transmembrane hemidesmosome component collagen XVII (ColXVII) is found in actin-rich lamella, situated behind the lamellipodium. A set of actin bundles, along which ColXVII colocalizes with actinin4, is present at each lamella. Knockdown of either ColXVII or actinin4 not only inhibits directed migration of keratinocytes but also relieves constraints on actin bundle retrograde movement at the site of lamella, such that actin bundle movement is enhanced more than 5-fold. Moreover, whereas control keratinocytes move in a stepwise fashion over a substrate by generating alternating traction forces, of up to 1.4 kPa, at each flank of the lamellipodium, ColXVII knockdown keratinocytes fail to do so. In summary, our data indicate that ColXVII-actinin4 complexes at the lamella of a moving keratinocyte regulate actin dynamics, thereby determining the direction of cell movement.-Hiroyasu, S., Colburn, Z. T., Jones, J. C. R. A hemidesmosomal protein regulates actin dynamics and traction forces in motile keratinocytes.
منابع مشابه
Conversion of a Signal into Forces for Axon Outgrowth through Pak1-Mediated Shootin1 Phosphorylation
Soluble guidance cues can direct cellular protrusion and migration by modulating adhesion and cytoskeletal dynamics. Actin filaments (F-actins) polymerize at the leading edge of motile cells and depolymerize proximally [1, 2]; this, together with myosin II activity, induces retrograde flow of F-actins [3-5]. It has been proposed that the traction forces underlying cellular motility may be regul...
متن کاملMolecular dynamics and forces of a motile cell simultaneously visualized by TIRF and force microscopies.
Cells must exert traction forces onto the substratum for continuous migration. Molecular dynamics such as actin polymerization at the front of the cell and myosin II accumulation at the rear should play important roles in the exertion of forces required for migration. Therefore, it is important to reveal the relationships between the traction forces and molecular dynamics. Traction forces can b...
متن کاملModeling the evolution of cells outgrowth due to the force exerted by actins
Motility and membrane deformation are crucial to motile cells. Therefore formation of protrusion in the membrane has been the subject of various studies. The stable shape of the membrane and also its movements are controlled by the forces exerted by actin filaments. In order to study the protrusion behavior, we represented a toy model based on actin filaments polar characteristic and elastic ch...
متن کاملIdentification of an actin binding surface on vinculin that mediates mechanical cell and focal adhesion properties.
Vinculin, a cytoskeletal scaffold protein essential for embryogenesis and cardiovascular function, localizes to focal adhesions and adherens junctions, connecting cell surface receptors to the actin cytoskeleton. While vinculin interacts with many adhesion proteins, its interaction with filamentous actin regulates cell morphology, motility, and mechanotransduction. Disruption of this interactio...
متن کاملPlasmodium sporozoite motility is modulated by the turnover of discrete adhesion sites.
Sporozoites are the highly motile stages of the malaria parasite injected into the host's skin during a mosquito bite. In order to navigate inside of the host, sporozoites rely on actin-dependent gliding motility. Although the major components of the gliding machinery are known, the spatiotemporal dynamics of the proteins and the underlying mechanism powering forward locomotion remain unclear. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- FASEB journal : official publication of the Federation of American Societies for Experimental Biology
دوره 30 6 شماره
صفحات -
تاریخ انتشار 2016